

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

OUTLINE AND READING

- General Trees (Ch. 7.1)
- Tree Traversals (Ch. 7.2)
- Binary Trees (Ch. 7.3)

WHAT IS A TREE

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:
- Organization charts
- File systems
- Programming environments

FORMAL DEFINITION

- A tree T is a set of nodes storing elements in a parent-child relationship with the following properties:
- If T is nonempty, it has a special node called the root of T, that has no parent
- Each node v of T different from the root has a unique parent node w; every node with parent w is a child of w
- Note that trees can be empty and can be defined recursively!
- Note each node can have zero or more children

Subtree: tree consisting of a node and its descendants

- Edge: a pair of nodes (u, v) such that u is a parent of $v((C, H))$
- Path: A sequence of nodes such that any two consecutives nodes form an edge (A, B, F, J)
- A tree is ordered when there is a linear ordering defined for the children of each node

EXERCISE

- Answer the following questions about the tree shown on the right:
- What is the size of the tree (number of nodes)?
- Classify each node of the tree as a root, leaf, or internal node
- List the ancestors of nodes B, F, G, and A. Which are the parents?
- List the descendants of nodes B, F, G, and A. Which are the children?
- List the depths of nodes B, F, G, and A.
- What is the height of the tree?

- Draw the subtrees that are rooted at node F and at node K.

TREE ADT

- We use positions to abstract nodes, as we don't want to expose the internals of our structure
- Position functions:
- p. parent() - return parent
- p. children() - list of children positions
- p.isRoot()
- p.isLeaf()
- Tree functions:
- size (
- empty ()
- $\operatorname{root}()$ - return position for root
- positions() - return list of all positions
- Additional functions may be defined by data structures implementing the Tree ADT, e.g., begin() and end ()

A LINKED STRUCTURE FOR GENERAL TREES

- A node is represented by an object storing
- Element
- Parent node
- Sequence of children nodes
- Node objects implement the Position ADT

PREORDER TRAVERSAL

- A traversal visits the nodes of a tree in a systematic manner

Algorithm preOrder(v)

1. visit(v)
2. for each child w of v
3. preOrder (w) before its descendants

- Application: print a structured document

1
Make Money Fast!

EXERCISE: PREORDER TRAVERSAL

- In a preorder traversal, a node is visited before its descendants
- List the nodes of this tree in preorder traversal order.

Algorithm preOrder(v)

1. $\operatorname{visit}(v)$
2. for each child w of v
3. preOrder (w)

POSTORDER TRAVERSAL

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

EXERCISE: POSTORDER TRAVERSAL

- In a postorder traversal, a node is visited after its descendants
- List the nodes of this tree in postorder traversal order.

Algorithm postOrder(v)

1. for each child w of v
2. postOrder (w)
3. $\operatorname{visit}(v)$

BINARY TREE

- A binary tree is a tree with the following properties:
- Each internal node has two children
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- If a child has only one child, the tree is improper
- Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree
- Applications
- Arithmetic expressions
- Decision processes
- Searching

ARITHMETIC EXPRESSION TREE

- Binary tree associated with an arithmetic expression
- Internal nodes: operators
- Leaves: operands
- Example: arithmetic expression tree for the expression $(2 \times(a-1)+(3 \times b))$

DECISION TREE

- Binary tree associated with a decision process
- Internal nodes: questions with yes/no answer
- Leaves: decisions
- Example: dining decision

PROPERTIES OF BINARY TREES

- Notation
- n number of nodes
- l number of leaves
- i number of internal nodes
- h height

- Properties:
- $l=i+1$
- $n=2 l-1$
- $h \leq i$
- $h \leq \frac{n-1}{2}$
- $l \leq 2^{h}$
- $h \geq \log _{2} l$
- $h \geq \log _{2}(n+1)-1$

[^0]

BINARY TREE ADT

- The Binary Tree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional position methods:
- p.left()
- p.right()
- Update methods may also be defined by data structures implementing the Binary Tree ADT

A LINKED STRUCTURE FOR BINARY TREES

- A node is represented by an object storing
- Element
- Parent node
- Left child node
- Right child node

INORDER TRAVERSAL

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
- $x(v)=$ inorder rank of v
- $y(v)=$ depth of v

Algorithm inOrder (v)

1. if v.isInternal()
2. inOrder $(v . \operatorname{left}())$
3. visit(v)
4. if v. isInternal()
5. inOrder(v.right())

EXERCISE: INORDER TRAVERSAL

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- List the nodes of this tree in inorder traversal order.

Algorithm inOrder (v)

1. if v. isInternal()
2. inOrder $(v . \operatorname{left}())$
3. visit(v)
4. if v. isInternal()
5. inOrder(v.right())

EXERCISE: PREORDER \& INORDER TRAVERSAL

- Draw a (single) binary tree T, such that
- Each internal node of T stores a single character
- A preorder traversal of T yields EXAMFUN
- An inorder traversal of T yields MAFXUEN

APPLICATION PRINT ARITHMETIC EXPRESSIONS

- Specialization of an inorder traversal
- print operand or operator when visiting node
- print "(" before traversing left subtree
- print ")" after traversing right subtree

Algorithm printExpression(v)

1. if v. isInternal()
2. print("(")
3. printExpression(v. left())
4. $\operatorname{print}(v$. element())
5. if v. isInternal()
6. printExpression(v. right())
7. print(")")
$((2 \times(a-1))+(3 \times b))$

APPLICATION
 EVALUATE ARITHMETIC EXPRESSIONS

- Specialization of a postorder traversal
- recursive method returning the value of a subtree
- when visiting an internal node, combine the values of the subtrees

5	1

EXERCISE
 ARITHMETIC EXPRESSIONS

- Draw an expression tree that has
- Four leaves, storing the values $1,5,6$, and 7
- 3 internal nodes, storing operations $+,-, *, /$ operators can be used more than once, but each internal node stores only one
- The value of the root is 21

EULER TOUR TRAVERSAL

- Generic traversal of a binary tree
- Includes as special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
- on the left (preorder)
- from below (inorder)
- on the right (postorder)

EULER TOUR TRAVERSAL

Algorithm eulerTour(v)

1. left_visit(v)
2. if v . isInternal()
3. eulerTour(v.left())
4. bottom_visit(v)
5. if v. isInternal()
6. eulerTour(v.right())
7. right_visit(v)

APPLICATION
 PRINT ARITHMETIC EXPRESSIONS

- Specialization of an Euler Tour traversal
- Left-visit: if node is internal, print "("
- Bottom-visit: print value or operator stored at node
- Right-visit: if node is internal, print ")"

$((2 \times(a-1))+(3 \times b))$

3. else

1

Algorithm printExpression(v)

1. if v. isExternal()
2. print v. element()
3. print ""
4. printExpression $(v . \operatorname{left}())$
5. print operator at v
6. printExpression $(v . \operatorname{right}())$
7. print ""

INTERVIEW QUESTION 1

- Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one.

INTERVIEW QUESTION 2

- Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g. , if you have a tree with depth D, you'll have D linked lists).

[^0]:

