
CH 7.
TREES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

Make Money Fast!

Stock

Fraud

Ponzi

Scheme

Bank

Robbery

OUTLINE AND READING

•General Trees (Ch. 7.1)

• Tree Traversals (Ch. 7.2)

• Binary Trees (Ch. 7.3)

WHAT IS A TREE

• In computer science, a tree is an abstract

model of a hierarchical structure

• A tree consists of nodes with a parent-child

relation

• Applications:

• Organization charts

• File systems

• Programming environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

FORMAL DEFINITION

• A tree 𝑇 is a set of nodes storing elements in a parent-child relationship with

the following properties:

• If 𝑇 is nonempty, it has a special node called the root of 𝑇, that has no parent

• Each node 𝑣 of 𝑇 different from the root has a unique parent node 𝑤; every node with

parent 𝑤 is a child of 𝑤

• Note that trees can be empty and can be defined recursively!

• Note each node can have zero or more children

subtee

TREE TERMINOLOGY

• Root: node without parent (A)

• Internal node: node with at least one child (A, B,
C, F)

• Leaf (aka External node): node without children
(E, I, J, K, G, H, D)

• Ancestors of a node: parent, grandparent,
great-grandparent, etc.

• Siblings of a node: Any node which shares a
parent

• Depth of a node: number of ancestors

• Height of a tree: maximum depth of any node
(3)

• Descendant of a node: child, grandchild, great-
grandchild, etc.

• Subtree: tree consisting of a node and its

descendants

• Edge: a pair of nodes (𝑢, 𝑣) such that 𝑢 is

a parent of 𝑣 ((𝐶, 𝐻))

• Path: A sequence of nodes such that any

two consecutives nodes form an

edge(𝐴, 𝐵, 𝐹, 𝐽)

• A tree is ordered when there is a linear

ordering defined for the children of each

node
A

B DC

G HE F

I J K

EXERCISE

• Answer the following questions about the tree
shown on the right:

• What is the size of the tree (number of nodes)?

• Classify each node of the tree as a root, leaf, or
internal node

• List the ancestors of nodes B, F, G, and A. Which
are the parents?

• List the descendants of nodes B, F, G, and A.
Which are the children?

• List the depths of nodes B, F, G, and A.

• What is the height of the tree?

• Draw the subtrees that are rooted at node F and
at node K.

A

B DC

G HE F

I J K

TREE ADT

• We use positions to abstract nodes, as we

don’t want to expose the internals of our

structure

• Position functions:

• 𝑝. parent() – return parent

• 𝑝. children() – list of children positions

• 𝑝. isRoot()

• 𝑝. isLeaf()

• Tree functions:

• size()

• empty()

• root() – return position for root

• positions() – return list of all positions

• Additional functions may be defined by data

structures implementing the Tree ADT, e.g.,

begin() and end()

A LINKED STRUCTURE FOR GENERAL TREES

• A node is represented by an object storing

• Element

• Parent node

• Sequence of children nodes

• Node objects implement the Position ADT

B

DA

C E

F



B

 

A D F



C



E

PREORDER TRAVERSAL

• A traversal visits the nodes of a tree in a

systematic manner

• In a preorder traversal, a node is visited

before its descendants

• Application: print a structured document

Algorithm preOrder(𝑣)
1. visit(𝑣)
2. for each child 𝑤 of 𝑣
3. preOrder(𝑤)

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock

Fraud

2.2 Ponzi

Scheme
1.1 Greed 1.2 Avidity

2.3 Bank

Robbery

1

2

3

5

4
6 7 8

9

EXERCISE: PREORDER TRAVERSAL

• In a preorder traversal, a node is visited before its descendants

• List the nodes of this tree in preorder traversal order.

A

B DC

G HE F

I J K

Algorithm preOrder(𝑣)
1. visit(𝑣)
2. for each child 𝑤 of 𝑣
3. preOrder(𝑤)

POSTORDER TRAVERSAL

• In a postorder traversal, a node is visited

after its descendants

• Application: compute space used by files in

a directory and its subdirectories

Algorithm postOrder(𝑣)
1. for each child 𝑤 of 𝑣
2. postOrder(𝑤)
3. visit(𝑣)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java

10K

Stocks.java

25K

h1c.doc

3K

h1nc.doc

2K

Robot.java

20K

9

3

1

7

2 4 5 6

8

EXERCISE: POSTORDER TRAVERSAL

• In a postorder traversal, a node is visited after its descendants

• List the nodes of this tree in postorder traversal order.
A

B DC

G HE F

I J K

Algorithm postOrder(𝑣)
1. for each child 𝑤 of 𝑣
2. postOrder(𝑤)
3. visit(𝑣)

BINARY TREE

• A binary tree is a tree with the following
properties:
• Each internal node has two children

• The children of a node are an ordered pair

• We call the children of an internal node left
child and right child

• If a child has only one child, the tree is
improper

• Alternative recursive definition: a binary tree
is either
• a tree consisting of a single node, or

• a tree whose root has an ordered pair of
children, each of which is a binary tree

• Applications

• Arithmetic expressions

• Decision processes

• Searching
A

B C

F GD E

H I

ARITHMETIC EXPRESSION TREE

• Binary tree associated with an arithmetic expression

• Internal nodes: operators

• Leaves: operands

• Example: arithmetic expression tree for the expression (2  (a - 1) + (3  b))

+



-2

a 1

3 b

DECISION TREE

• Binary tree associated with a decision process

• Internal nodes: questions with yes/no answer

• Leaves: decisions

• Example: dining decision
Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

PROPERTIES OF BINARY TREES

• Notation

• 𝑛 number of nodes

• 𝑙 number of leaves

• 𝑖 number of internal nodes

• ℎ height

• Properties:

• 𝑙 = 𝑖 + 1

• 𝑛 = 2𝑙 − 1

• ℎ ≤ 𝑖

• ℎ ≤
𝑛−1

2

• 𝑙 ≤ 2ℎ

• ℎ ≥ log2 𝑙

• ℎ ≥ log2 𝑛 + 1 − 1

BINARY TREE ADT

• The Binary Tree ADT extends the

Tree ADT, i.e., it inherits all the

methods of the Tree ADT

• Additional position methods:

• 𝑝. left()

• 𝑝. right()

• Update methods may also be

defined by data structures

implementing the Binary Tree ADT

A LINKED STRUCTURE FOR BINARY TREES

• A node is represented by an object storing

• Element

• Parent node

• Left child node

• Right child node
B

DA

C E

 

   

B

A D

C E



INORDER TRAVERSAL

• In an inorder traversal a node is visited after
its left subtree and before its right subtree

• Application: draw a binary tree

• 𝑥 𝑣 = inorder rank of 𝑣

• 𝑦 𝑣 = depth of 𝑣

Algorithm inOrder(𝑣)
1. if 𝑣. isInternal()
2. inOrder(𝑣. left())
3. visit(𝑣)
4. if 𝑣. isInternal()
5. inOrder(𝑣. right())

3

1

2

5

6

7 9

8

4

EXERCISE: INORDER TRAVERSAL

• In an inorder traversal a node is visited after its left subtree and before its right subtree

• List the nodes of this tree in inorder traversal order. A

B C

G HE F

I J

Algorithm inOrder(𝑣)
1. if 𝑣. isInternal()
2. inOrder(𝑣. left())
3. visit(𝑣)
4. if 𝑣. isInternal()
5. inOrder(𝑣. right())

EXERCISE: PREORDER & INORDER TRAVERSAL

• Draw a (single) binary tree 𝑇, such that

• Each internal node of 𝑇 stores a single character

• A preorder traversal of 𝑇 yields EXAMFUN

• An inorder traversal of 𝑇 yields MAFXUEN

APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an inorder traversal

• print operand or operator when visiting node

• print “(“ before traversing left subtree

• print “)“ after traversing right subtree

Algorithm printExpression(𝑣)

1. if 𝑣. isInternal()

2. print("(")

3. printExpression(𝑣. left())

4. print(𝑣. element())

5. if 𝑣. isInternal()

6. printExpression(𝑣. right())

7. print(")")

+



-2

a 1

3 b

((2  (a - 1)) + (3  b))

APPLICATION
EVALUATE ARITHMETIC EXPRESSIONS

• Specialization of a postorder traversal

• recursive method returning the value of a subtree

• when visiting an internal node, combine the values

of the subtrees

Algorithm evalExpr(𝑣)

1. if 𝑣. isExternal()

2. return 𝑣. element()

3. 𝑥 ← evalExpr(𝑣. left())

4. 𝑦 ← evalExpr(𝑣. right())

5. ∘ ← operator stored at 𝑣

6. return 𝑥 ∘ 𝑦

+



-2

5 1

3 2

EXERCISE
ARITHMETIC EXPRESSIONS

• Draw an expression tree that has

• Four leaves, storing the values 1, 5, 6, and 7

• 3 internal nodes, storing operations +, -, *, /

operators can be used more than once, but each internal node stores only one

• The value of the root is 21

EULER TOUR TRAVERSAL

• Generic traversal of a binary tree

• Includes as special cases the preorder, postorder and inorder traversals

• Walk around the tree and visit each node three times:

• on the left (preorder)

• from below (inorder)

• on the right (postorder)

+



-2

5 1

3 2

L

B

R

EULER TOUR TRAVERSAL

Algorithm eulerTour(𝑣)

1. left_visit(𝑣)
2. if v. isInternal()

3. eulerTour(𝑣. left())

4. bottom_visit(𝑣)

5. if 𝑣. isInternal()

6. eulerTour(𝑣. right())

7. right_visit(𝑣)

+



-2

5 1

3 2

L

B

R

APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an Euler Tour traversal

• Left-visit: if node is internal, print “(”

• Bottom-visit: print value or operator stored at

node

• Right-visit: if node is internal, print “)”

Algorithm printExpression(𝑣)

1. if 𝑣. isExternal()

2. print 𝑣. element()

3. else

4. print “(”

5. printExpression(𝑣. left())

6. print operator at 𝑣

7. printExpression(𝑣. right())

8. print “)”

+



-2

a 1

3 b

((2  (a - 1)) + (3  b))

INTERVIEW QUESTION 1

• Implement a function to check if a binary tree is balanced. For the purposes

of this question, a balanced tree is defined to be a tree such that the heights

of the two subtrees of any node never differ by more than one.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

• Given a binary tree, design an algorithm which creates a linked list of all the

nodes at each depth (e.g. , if you have a tree with depth D, you'll have D

linked lists).

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

