

CH 7. TREES

 \bigcirc

0

0

Q

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

OUTLINE AND READING

• General Trees (Ch. 7.1)

Q

 \bigcirc

 \mathcal{O}

9

 \bigcirc

Ó

- Tree Traversals (Ch. 7.2)
- Binary Trees (Ch. 7.3)

WHAT IS A TREE

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:

 \mathcal{O}

 \bigcirc

O

6

6

 \bigcirc

 \bigcirc

- Organization charts
- File systems
- Programming environments

FORMAL DEFINITION

Q

 \bigcirc

Ċ

- A tree T is a set of nodes storing elements in a parent-child relationship with the following properties:
 - If T is nonempty, it has a special node called the root of T, that has no parent
 - Each node v of T different from the root has a unique parent node w; every node with parent w is a child of w
- Note that trees can be empty and can be defined recursively!
- Note each node can have zero or more children

TREE TERMINOLOGY

Root: node without parent (A)

O

 \bigcirc

- Internal node: node with at least one child (A, B, C, F)
- Leaf (aka External node): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, great-grandparent, etc.
- Siblings of a node: Any node which shares a parent
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node
 (3)
- Descendant of a node: child, grandchild, greatgrandchild, etc.

- Subtree: tree consisting of a node and its descendants
- Edge: a pair of nodes (u, v) such that u is a parent of v ((C, H))
- Path: A sequence of nodes such that any two consecutives nodes form an edge(A, B, F, J)
- A tree is ordered when there is a linear ordering defined for the children of each node

EXERCISE

- Answer the following questions about the tree shown on the right:
 - What is the size of the tree (number of nodes)?
 - Classify each node of the tree as a root, leaf, or internal node
 - List the ancestors of nodes B, F, G, and A. Which are the parents?
 - List the descendants of nodes B, F, G, and A. Which are the children?
 - List the depths of nodes B, F, G, and A.
 - What is the height of the tree?
 - Draw the subtrees that are rooted at node F and at node K.

λ

 \bigcirc

О

 \bigcirc

Q

 \bigcirc

TREE ADT

- We use positions to abstract nodes, as we don't want to expose the internals of our structure
- Position functions:
 - *p*.parent() return parent
 - p. children() list of children positions
 - *p*.isRoot()
 - *p*.isLeaf()

- Tree functions:
 - size()
 - empty()
 - root() return position for root
 - positions() return list of all positions
- Additional functions may be defined by data structures implementing the Tree ADT, e.g., begin() and end()

A LINKED STRUCTURE FOR GENERAL TREES

- A node is represented by an object storing
 - Element

D

 \bigcirc

 \bigcirc

 \mathcal{O}

6

 \bigcirc

- Parent node
- Sequence of children nodes
- Node objects implement the Position ADT

PREORDER TRAVERSAL

 \mathbf{O}

 \bigcirc

O

Q

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants

<u>Algorithm preOrder(v)</u>
1. visit(v) **2. for each** child w of v **3.** preOrder(w)

EXERCISE: PREORDER TRAVERSAL

- In a preorder traversal, a node is visited before its descendants
- List the nodes of this tree in preorder traversal order.

Algorithm preOrder(v)
1. visit(v)
2. for each child w of v
3. preOrder(w)

λ

 \mathcal{O}

 \bigcirc

 \bigcirc

6

POSTORDER TRAVERSAL

D

 \bigcirc

 \mathcal{O}

Q

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

<u>Algorithm postOrder(v)</u>
1. for each child w of v
2. postOrder(w)
3. visit(v)

EXERCISE: POSTORDER TRAVERSAL

- In a postorder traversal, a node is visited after its descendants
- List the nodes of this tree in postorder traversal order.

- 1. for each child w of v
- **2.** postOrder(*w*)
- 3. visit(v)

 \cap

 \bigcirc

 \bigcirc

BINARY TREE

- A binary tree is a tree with the following properties:
 - Each internal node has two children
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- If a child has only one child, the tree is improper
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications
 - Arithmetic expressions
 - Decision processes

λ

ARITHMETIC EXPRESSION TREE

- Binary tree associated with an arithmetic expression
 - Internal nodes: operators
 - Leaves: operands

6

 \bigcirc

• Example: arithmetic expression tree for the expression $(2 \times (a - 1) + (3 \times b))$

DECISION TREE

O

 \bigcirc

 \bigcirc

 \mathcal{O}

6

 \bigcirc

• Binary tree associated with a decision process

- Internal nodes: questions with yes/no answer
- Leaves: decisions

PROPERTIES OF BINARY TREES

- Notation
 - *n* number of nodes
 - *l* number of leaves
 - *i* number of internal nodes
 - *h* height

- Properties:
 - l = i + 1
 - n = 2l 1
 - $h \leq i$
 - $h \leq \frac{n-1}{2}$
 - $l \leq 2^h$
 - $h \ge \log_2 l$
 - $h \ge \log_2(n+1) 1$

 \mathcal{O}

 \bigcirc

O

9

Ò

BINARY TREE ADT

- The Binary Tree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional position methods:
 - *p*.left()

D

6

 \bigcirc

 \bigcirc

• *p*.right()

 Update methods may also be defined by data structures implementing the Binary Tree ADT

A LINKED STRUCTURE FOR BINARY TREES

В

 \square

D

- A node is represented by an object storing
 - Element

 \mathcal{O}

 \bigcirc

 \mathcal{O}

6

- Parent node
- Left child node
- Right child node

INORDER TRAVERSAL

- In an *inorder traversal* a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

 \bigcirc

 \bigcirc

- 1. if *v*.isInternal()
- **2.** inOrder(v.left())
- 3. visit(v)
- 4. if *v*.isInternal()
- 5. inOrder(v.right())

EXERCISE: INORDER TRAVERSAL

D

 \bigcirc

Q

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- List the nodes of this tree in inorder traversal order.

<u>Algorithm inOrder(v)</u>

- **1.** if v. isInternal()
- **2.** inOrder(v.left())
- 3. visit(v)
- 4. if *v*.isInternal()
- 5. inOrder(*v*.right())

EXERCISE: PREORDER & INORDER TRAVERSAL

- Draw a (single) binary tree T, such that
 - Each internal node of T stores a single character
 - A preorder traversal of T yields EXAMFUN
 - An inorder traversal of T yields MAFXUEN

APPLICATION PRINT ARITHMETIC EXPRESSIONS

Q

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm printExpression(v)

- **1.** if *v*. isInternal()
- **2.** print("(")
- **3.** printExpression(*v*.left())
- 4. print(*v*.element())
- **5.** if *v*.isInternal()
- **6.** printExpression(*v*.right())
- 7. print(")")

APPLICATION EVALUATE ARITHMETIC EXPRESSIONS

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

Algorithm evalExpr(v) 1. if v. isExternal() 2. return v. element() 3. $x \leftarrow evalExpr(v.left())$ 4. $y \leftarrow evalExpr(v.right())$ 5. $\circ \leftarrow operator stored at <math>v$ 6. return $x \circ y$

EXERCISE ARITHMETIC EXPRESSIONS

 \cap

Q

 \bigcirc

• Draw an expression tree that has

- Four leaves, storing the values 1, 5, 6, and 7
- 3 internal nodes, storing operations +, -, *, /
 operators can be used more than once, but each internal node stores only one
- The value of the root is 21

EULER TOUR TRAVERSAL

- Generic traversal of a binary tree
- Includes as special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)

- from below (inorder)
- on the right (postorder)

EULER TOUR TRAVERSAL Algorithm eulerTour(v) 1. left_visit(v) **2.** if v.isInternal() 3. eulerTour(v.left()) 4. bottom_visit(v) **5.** if *v*. isInternal() eulerTour(v.right()) 6. 7. right_visit(v)

D

 \bigcirc

6

APPLICATION PRINT ARITHMETIC EXPRESSIONS

 \bigcirc

Q

- Specialization of an Euler Tour traversal
 - Left-visit: if node is internal, print "("
 - Bottom-visit: print value or operator stored at node
 - Right-visit: if node is internal, print ")" •

Algorithm printExpression(v)

- **1.** if v. isExternal()
- 2. print v. element()
- **3.** else

8.

- 4. print "("
- 5. printExpression(v.left())
- 6. print operator at v
- 7. printExpression(v.right())
 - print ")"

INTERVIEW QUESTION 1

Q

Implement a function to check if a binary tree is balanced. For the purposes
of this question, a balanced tree is defined to be a tree such that the heights
of the two subtrees of any node never differ by more than one.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

Q

 Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked lists).

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.