| /K\\O
\01\]

o—

CH 7.

d ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

\O MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

OUTLINE AND READING

®* General Trees (Ch. 7.1)
®* Tree Traversals (Ch. 7.2)
® Binary Trees (Ch. 7.3)

%

WHAT IS A TREE

® In computer science, a tree is an abstract

model of a hierarchical structure

* A tree consists of nodes with a parent-child

relation

* Applications:
® Organization charts
® File systems

® Programming environments

| K\» /
1\0 FORMAL DEFINITION {

/
O
*A T is a set of storing elements in a relationship with
the following properties:
® If T is nonempty, it has a special node called the of T, that has no parent
l ®* Each node v of T different from the root has a unique node wW; every node with
parent W is a of w

Cf o ®* Note that trees can be empty and can be defined recursively!

® Note each node can have zero or more children

O

0

1§ TREE TERMINOLOGY

: node without parent (A)

: node with at least one child (A, B,
C, F)

(aka External node): node without children
(E 1,), K, G, H,D)

of a node: parent, grandparent,
great-grandparent, etc.

of a node: Any node which shares a
parent

of a node: number of ancestors

of a tree: maximum depth of any node

)

of a node: child, grandchild, great-
grandchild, etc.

® Atreeis

: tree consisting of a node and its
descendants

: a pair of nodes (u, V) such that u is
a parent of v ((C, H))

: A sequence of nodes such that any
two consecutives nodes form an

edge(4, B, F,])

when there is a linear
ordering defined for the children of each

node

1\) EXERCISE

O

* Answer the following questions about the tree
shown on the right:

® What is the size of the tree (number of nodes)?

® Classify each node of the tree as a root, leaf, or
internal node

® List the ancestors of nodes B, F, G, and A. Which
are the parents?

® List the descendants of nodes B, F, G, and A.
Which are the children?

* List the depths of nodes B, F, G, and A.
p ® What is the height of the tree?

® Draw the subtrees that are rooted at node F and
at node K.

TREE ADT

We use positions to abstract nodes, as we ® Tree functions:

don’t want to expose the internals of our

structure
® Position functions: — return position for root
— return parent — return list of all positions
— list of children positions ® Additional functions may be defined by data

structures implementing the Tree ADT, e.g.,
and

1\\5 A LINKED STRUCTURE FOR GENERAL TREES

®* A node is represented by an object storing

®* Element B

® Parent node

* Sequence of children nodes

l * Node obijects implement the Position ADT

@)

",

C =

%

PREORDER TRAVERSAL

®* A fraversal visits the nodes of a tree in a

systematic manner

® In a preorder traversal, a node is visited

before its descendants

* Application: print a structured document

Algorithm preOrder(v)

1. visit(v)
2. for each child w of v
3. preOrder(w)

1§ EXERCISE: PREORDER TRAVERSAL

O

® Ina , a node is visited before its descendants

® List the nodes of this tree in preorder traversal order.

!

Algorithm preOrder(v)
T 1. visit(v)
P 2. for each child w of v
3. preOrder(w)

1§ POSTORDER TRAVERSAL

O .
®* In a postorder traversal, a node is visited Algorithm postOrder(v)
1. for each child w of v

after its descendants
2 postOrder(w)
* Application: compute space used by files in 3. visit(v)
l a directory and its subdirectories

1\\5 EXERCISE: POSTORDER TRAVERSAL {

O

®Ilna , d node is visited after its descendants

® List the nodes of this tree in postorder traversal order.

!

Cf Algorithm postOrder(v)
O 1. for each child w of v
2. postOrder(w)
3. visit(v)

O

[o

1\) BINARY TREE

A is a tree with the following
properties:

® Each internal node has two children
® The children of a node are an ordered pair

We call the children of an internal node
and

If a child has only one child, the tree is

Alternative recursive definition: a binary tree
is either

® a tree consisting of a single node, or

®* a tree whose root has an ordered pair of
children, each of which is a binary tree

® Applications
® Arithmetic expressions
® Decision processes

® Searching

1§ ARITHMETIC EXPRESSION TREE

/
O : : : : : :
® Binary tree associated with an arithmetic expression
® Internal nodes: operators
®* Leaves: operands
l * Example: arithmetic expression tree for the expression (2 x (a — 1) + (3 x b))

[o

K\O
1\] DECISION TREE

A
O
® Binary tree associated with a decision process
* Internal nodes: questions with yes/no answer
* Leaves: decisions
l ®* Example: dining decision
@)

1§ PROPERTIES OF BINARY TREES

/]
° ® Notation ® Properties:

® 1N number of nodes *l=i+1

* [number of leaves *n=21-1
l * [number of internal nodes *h<i

* h height o <t

T <2
p h = log, [

h>log,(n+1)—1

O

!
[o

1§ BINARY TREE ADT

®* The Binary Tree ADT extends the
Tree ADT, i.e., it inherits all the
methods of the Tree ADT

* Additional position methods:

®* Update methods may also be
defined by data structures

implementing the Binary Tree ADT

1§ A LINKED STRUCTURE FOR BINARY TREES

O

®* A node is represented by an object storing
® Element B

® Parent node

l ® |eft child node

® Right child node
\ /]

%

1§ INORDER TRAVERSAL

O

® Inan a node is visited after
its left subtree and before its right subtree

* Application: draw a binary tree
* x(v) = inorder rank of v

l * y(v) = depth of v

Algorithm inOrder(v)

1.

2
3.
4.
5

if v.isInternal()
inOrder(v. left())

visit(v)

if v.isInternal()
inOrder(v. right())

1§ EXERCISE: INORDER TRAVERSAL

/
O
® Inan a node is visited after its left subtree and before its right subtree
® List the nodes of this tree in inorder traversal order.
l Algorithm inOrder(v)
1. if v.isInternal()
2. inOrder(v.left())
O 3. visit(v)

4. if v.isInternal()
5. inOrder(v. right())

O

!
[o

1§ EXERCISE: PREORDER & INORDER

®* Draw a (single) binary tree T, such that
® Each internal node of T stores a single character
* A preorder traversal of T yields

® An inorder traversal of T yields

TRAVERSAL

LN
\

O

APPLICATION

PRINT ARITHMETIC EXPRESSIONS

® Specialization of an inorder traversal Algorithm printExpression(v)
® print operand or operator when visiting node 1. if v. isInternal()
® print “(“ before traversing left subtree 2. print()
® print “)* after traversing right subtree 3. printExpression(v. left())

4. print(v. element())

S. if v.isInternal()

6. printExpression(v. right())
/. print(")")

b

(RGN EXERY))

APPLICATION
EVALUATE ARITHMETIC EXPRESSIONS

* Specialization of a postorder traversal
® recursive method returning the value of a subtree

® when visiting an internal node, combine the values

of the subtrees

Algorithm evalExpr(v)

1. if v.isExternal()

2. return v.element()

3. x < evalExpr(v.left())
4. y « evalExpr(v.right())
5. o« operator stored at v
O. return x o y

K EXERCISE
1 ARITHMETIC EXPRESSIONS

/
O
®* Draw an expression tree that has
® Four leaves, storing the values 1, 5, 6, and 7
* 3 internal nodes, storing operations +, -, ¥,
l operators can be used more than once, but each internal node stores only one

® The value of the rootis 21

[5

EULER TOUR TRAVERSAL

® Generic traversal of a binary tree
® Includes as special cases the preorder, postorder and inorder traversals

® Walk around the tree and visit each node three times:
® on the left (preorder)
® from below (inorder)

® on the right (postorder)

EULER TOUR TRAVERSAL

Algorithm eulerTour(v)

1. left_visit(v)

2. if v.isInternal()

3. eulerTour(v.left())
4. bottom_visit(v)

S. if v.isInternal()

6. eulerTour(v.right())
7. right_visit(v)

K APPLICATION
1 PRINT ARITHMETIC EXPRESSIONS

/
> ® Specialization of an Euler Tour traversal
® Left-visit: if node is internal, print “(”
® Bottom-visit: print value or operator stored at
node
l ® Right-visit: if node is internal, print “)”

Algorithm printExpression(v)
if v.isExternal()
print v. element()

1.
2
3. else

4, print

5. printExpression(v.left())
6 print operator at v

/ printExpression(v. right())
8 print

a| |1 (2 x (a— 1)) + (3 x b))

INTERVIEW QUESTION 1

® Implement a function to check if a binary tree is balanced. For the purposes
of this question, a balanced tree is defined to be a tree such that the heights

of the two subtrees of any node never differ by more than one.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

* K\) 4
1\0 INTERVIEW QUESTION 2 f

O

®* Given a binary tree, design an algorithm which creates a linked list of all the
nodes at each depth (e.g., if you have a tree with depth D, you'll have D
linked lists).

!
[o

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

